

Andrzej Kowalczyk

Optical Coherence Tomography (19th century physics as a diagnostic tool for ophthalmology and art conservation)

Nicolaus Copernicus University, Toruń, Poland

OCT: from *en face* illumination & observation to cross sectional image

Ophthalmology: retina

Art conservation - varnish

Sample taken by traditional way

Tomogram OCT

Tomogram consists of lines

But how to get an individual line?

Basic tricks – same as in Michelson's definition of the meter

Precision of arms length match & axial resolution

Wider spectrum of the source $S(\omega) \rightarrow$ narrower coherence envelope $\Gamma(\tau)$:

$$\Gamma(\tau) = FT\{S(\omega)\}$$

Axial resolution with: Sodium lamp: 0.6 mm,

Superluminescent diode: 5 - 15 µm

Individual line in Time domain OCT

J. Fujimoto, MIT, 1991; Humphrey Zeiss, 1996, Zeiss Meditec 2003

Is it possible to use light more effectively?

In Time domain OCT light penetrates the object during mirror movement (about 10 ms) but only the fraction reflected at sequential interfaces contributes to the signal

A.F.Fercher, MedUni, Vienna

Individual line in Spectral OCT

Reference mirror (stationary)

$$I(\omega) = I_1(\omega) + I_2(\omega) + 2\sqrt{I_1(\omega)I_2(\omega)} \cos \left(\frac{2(d_2 - d_1)}{c}\omega\right)$$

Spectral OCT – spectrum modulation ∞ \(\Delta\)d

Reference mirror (stationary)

$$I(\omega) = I_1(\omega) + I_2(\omega) + 2\sqrt{I_1(\omega)I_2(\omega)} \cos \left(\frac{2(d_2 - d_1)}{c}\omega\right)$$

Information along one line collected in 20µs

Additional effort is required

One tomogram line (axial structure of the object)

Jean Baptiste Joseph Fourier 1768-1830

Advantages: more lines in shorter time

- 1. Time domain OCT- 500 lines in 1.4 sec
- 2. Spectral OCT 9000 lines in 0.4 sec

Tradeoff: low density of lines \(\Delta\) many cross sections at different locations (3D rendering)

Age-related Macular Degeneration

> Meas. time 2 s

Tradeoff: low density of lines ⇔many cross sections at different locations (3D-cube)

Tractions → macular hole

Tradeoff: low density of lines many cross sections at the same location (movie)

The human nerve head in vivo

Size: 600 A-scans Registration: 33 fr/s Play-back: 33 fr/s

0.2 mm

Question #1:

Why Michelson has not invented OCT despite he used the same idea to define the meter in terms of λ_{kr} ?

Technology:

- computers were not available
- •there were no efficient light sources of high transversal coherence (small hole=no light)

Examples: Cornea & contact lens

0.3 mm

Schematic diagram

Classical examination

Cornea & contact lens, both transparen •lens - homogenous - no scattering cornea - fibrous structure - scattering Contact lens

Examples: corneo-scleral angle & iris

Schematic diagram

Classical examination

Normal eye

Pathologies

0.4 mm

Examples:Intra ocular lenses

0.5 mm

Secondary cataract before and after capsulotomy

Examples: pathology of the optic disc

Examples: Macular hole

Example: Age related macular degeneration -pathology of the macula

Laboratory prototype in clinic...

...and commercialized version: SOCT Copernicus

Question #2:

Why newcomers pioneered in fast ophthalmic OCT measurements?

Technology:

- •CCD were too slow to be used in ophthalmology →CCD matrix used as a fast memory.
- •since 2003 fast line scan CCD made Spectral OCT available to all.

Psychology:

- positive attitiude to applied research
- patience

Methodology:

How to deal with overlap of:

•twin images see next 2 slides

useful and useless information

|FT{real valued function}|→twin images

Useful & useless information together

What next: proper imaging of flows

What next: topography of cornea in 25 ms!

thickness map topography of anterior posterior surface

TO FUE

Medical Physics Group

Prof. Andrzej Kowalczyk

Dr hab. Piotr Targowski

Dr Maciej Wojtkowski

Dr Iwona Gorczyńska

Dr Ireneusz Grulkowski

Mgr Anna Szkulmowska

Mgr Michalina Góra

Mgr Karol Karnowski

Mgr Danuta Bukowska

Mgr Szymon Tamborski

Mgr inż. Danie Szlag

Thank you